Soft Start-up Valve AV2000/3000/4000/5000 Series

AV5000

Large effective area (mm²) With supply/exhaust function by manual operation AV2000/ 20 (Body size: 1/4) AV3000/ 37 (Body size: 3/8) AV4000/ 61 (Body size: 1/2) AV5000/ 113 (Body size: 3/4)

Combination with F.R.L. unit

AV5000/ 122 (Body size: 1)

Soft Start-up Valve CE/UKCA compliant: "G", grommet is not available.

₿SMC

Soft Start-up Valve AV2000/3000/4000/5000 Series

Type D DIN terminal

Type Y DIN terminal

Symbol

Accessorv/Pressure Gauge

Description	Pressure gauge
Part no.	G36-10-01
Pressure range	1 MPa

Specifications

Mo	odel		AV2000	AV3000	AV4000	AV5	000			
Ро	rt size		1/4	3/8	1/2	3/4	1			
Pr	oof pressure				1.5 MPa					
Op	erating press	ure range		(0.2 to 1 MF	a				
Pr	essure gauge	port size			1/8					
An	bient and fluid t	emperature			0 to 60°C (1)				
Effective area 1(P) → 2(A)			20	37	61	113	122			
	(mm²) 2(A) -		24	49	76	132	141			
Weight (kg)			0.27	0.48	0.74	1.54				
Rated coil voltage		Itage	100, 200, 110 to 120, 220 VAC (50/60 Hz), 240 VAC (50/60 Hz) 12, 24 VDC							
tion	Allowable voltag	e fluctuation	-15 to +10% of rated voltage							
icat	Coil insulatio	n type	Equivalent to B type (130°C)							
ecif	Apparent power	Inrush	5.6 VA (50 Hz), 5.0 VA (60 Hz)							
l sp	(Current consumption)	Energized	3.4 VA (2.1 W)/50 Hz, 2.3 VA (1.5 W)/60 Hz							
Current consumption DC			1.8 W							
Electrical entry			Grommet, Type D DIN terminal, Type Y DIN terminal							
Ξ	Option specif	ications	Indic	ator light/S	urge voltage	e suppresso	r (2)			
Pil	ot valve manu	al override		Non-lockir	ng push type	e (Flush),				
		Locking type (Tool required), Locking type (Lever)								

Note 1) Use dry air when operating at a low temperature. Note 2) The grommet type is equipped with a surge voltage suppressor (direct coupling type lead wire), but not an indicator light.

Piston B Switching Pressure (Close → Open)

Needle Valve Flow Rate Characteristics

SMC

AV2000/3000/4000/5000 Series

Working Principle

Working condition	Pilot valve	Pressure conditions	Working description	Pressure time chart (Meter-out control) example	Cylinder drive circuit (Meter-out control) example
Low speed supply		1/2 Pp > Pa	When pilot valve \textcircled{O} is turned ON by energization or manual override, the pilot air pushes piston A \textcircled{O} and main valve \textcircled{O} downward and opens main valve \textcircled{O} downward and opens main neously. The air from P portmoves to needle valve \textcircled{O} , where its flow is adjusted, and flows to A port. The meter-in control of needle valve O slowly moves the cylinder from $Oto \textcircled{O}.$	Initial Operation Return Stroke	
High speed supply		1/2 Pp ≤ Pa	When 1/2 PP \leq PA after the cylinder reaches (B), piston B (S) fully opens and PA increases rapidly as shown from (C) to (D) and becomes the same pressure as PP.	PR (Atmospheric pressure) Time	
Normal operation		Pp ≈ Pa	Since piston B (5) holds the fully open cylinder's speed will be controlled by th	2(A) ↓ (Z) ↓ (Z)	
Quick exhaust	OFF	_	When pilot valve ② is turned OFF, s valve ① upward and opens R port whil The pressure difference generated at and the residual pressure on the A port	pring ④ pushes piston A ③ and main e shutting off the air supply from P port. this time lets the check valve ⑥ open side is quickly exhausted from R port.	1(P) Q 3(R)

Soft Start-up Valve AV2000/3000/4000/5000 Series

Construction

Component Parts

No.	Description	Material
1	Body	Aluminum die-casted
2	Сар	Aluminum die-casted
3	Cover	Aluminum die-casted

Replacement Parts

Nie	Description	Motorial	Part no.						
INO.	Description	waterial	AV2000	AV3000	AV4000	AV5000			
4	Pilot valve assembly			SF4-□-80(-Q)*1					
5	Piston A assembly	POM, NBR	P424204A	P424304A	P424404A	P424504A			
6	Piston B assembly	Brass, HNBR, NBR	P424205A	P424305A	P424405A	P424505A			
7	Main valve assembly	Brass, HNBR, NBR	P424206A	P424306A	P424406A	P424506A			
8	Check valve	Brass, HNBR	P424207-30	P424307-30	P424407-30	P424507-30			
9	Piston guide assembly	POM, NBR	P424208A	P424208A P424308A		P424508A			
10	Needle assembly	Brass, NBR	P424209A	P424309A	P424409A	P424509A			
11	Valve spring	Steel wire	P424211	P424311	P424411	P424511			
12	Piston spring	Stainless steel	P424212	P424312	P424412	P424512			
13	Check spring	Stainless steel	P424213	P424213 P424313		P424513			
14	Needle spring	Steel wire	P424214	P424314	P424414	—			
15	Type C retaining ring for shaft	Tool steel *2	FL00083	FL00007	FL00022	FL00025			
16	Type C retaining ring for hole	Tool steel	FQ00003	FQ00004	FG00003	FG00005			
17	Seal	NBR	P424210	P424310	P424410	P424510			
18	Seal	NBR	P424218	P424315	P424415	P424514			
19	O-ring	NBR	KA00001	KA00004	KA00116	KA02247			

*1 For "How to Order" pilot valve assembly, refer to page 936. *2 Stainless steel for the AV4000

AV2000/3000/4000/5000 Series

Dimensions

Grommet: AV 00-0-G, GS

Applicable cabtire cord O.D.: ø6, ø8 ĸ Manual override (Locking lever type) Δ G With light/surge voltage suppressor Ð ۵ Indicator light Ι P €₽ XП C Pressure gauge 4 x **R** mounting R Е 36.8 bore 1/8 Р D

DIN terminal: AV=00-=-=D, DZ DIN terminal for European use: AV=00-=-=Y, YZ

											_	_				
Model	Port size	A	в	с	D	Е	G	н	I	к	L	м	N	Р	Q	R
AV2000-02-0G																M4 x 0 7
AV2000-02-0GS0	1/4	66	105	31	22	40	38	0	47.5	-	-	-	93	29	23.5	Depth 4.5
AV2000-02-0D										65.5	_	6				M4 x 0.7
AV2000-02-02	1/4	66	125	31	22	40	38	0	-	-	80.5	23	1 -	29	23.5	Depth 4.5
AV2000-□02-□Y□										67.5	_	10.5				M4 x 0.7
AV2000-02-0YZ0	1/4	66	125	31	22	40	38	0	-	—	84.5	27.5	1 -	29	23.5	Depth 4.5
AV3000-003-0G	0/0		110		04	40	40						100	00	07.5	M5 x 0.8
AV3000-003-0GS0	3/8	76	112	30	24	48	43	2	50.5	-	_	_	100	28	27.5	Depth 5
AV3000-003-00	2/0		40	40	40 0		66.5	—	-		200	07.5	M5 x 0.8			
AV3000-003-0DZ0	3/0	/0	132	30	24	40	43 2	2	-	-	83.5	16	_	28	27.5	Depth 5
AV3000-□03-□Y□	2/0	76	120	26	24	40	40	2		70.5	—	3.5		200	07 5	M5 x 0.8
AV3000-□03-□YZ□	3/8	/0	132	30	24	40	43	2	-	-	87.5	20.5	_	20	27.5	Depth 5
AV4000-□04-□G□	1/0	00	107	47	20	50	57		005				115	40	07	M6 x 1
AV4000-004-0GS0	1/2	98	127	47	32	52	57	3	62.5	_	_	_	115	42	3/	Depth 6
AV4000-□04-□D□	1/2	00	147	47	32	52	57	2		78.5	_	—		12	27	M6 x 1
AV4000-004-0DZ	1/2	90	147	47	32	52	57	<u> </u>	_		95.5	6	_	42	3/	Depth 6
AV4000-□04-□Y□	1/2	0.00	147	47	32	52	57	2		82.5	_	_		12	27	M6 x 1
AV4000-□04-□YZ□	1/2	90	147	47	32	52	57		_	-	99.5	10.5	_	42	3/	Depth 6
AV5000-□ 10 -□G□	2/4 1	100	155	50	20	74	77		74				142	50	46	M6 x 1
AV5000-0 10 -0GS0	3/4,1	128	155	59	39	74	<i>''</i>	0	74		_	_	143	50	40	Depth 7.5
AV5000-□ 18-□D□	3/4,1	129	175	50	20	74	77			90	_	—		50	16	M6 x 1
AV5000-0 10 -0 DZ		120	1/5	- 19	39	/4	<i>''</i>			_	107	—		30	40	Depth 7.5
AV5000-0 10 -0 Y	3/4 1	128	175	59	30	74	77	0		94	-	-	_	50	46	M6 x 1
AV5000-□ 18-□YZ□	3/4,1	120	173	33	33	/4				-	111	—		30	40	Depth 7.5

Soft Start-up Valve AV2000/3000/4000/5000 Series

Connecting Spacer for Modular Type F.R.L. Unit

Select one of the spacers below when connecting to an F.R.L. combination unit (AC20 to AC60). (Spacers must be ordered separately.)

Spacer (Y⊡-D)

Model	Applicable model
Y200-D	AV2000
Y300-D	AV3000
Y400-D	AV4000
Y600-D	AV5000

Spacer with bracket (Y□T-D)

Model	Applicable model
Y200T-D	AV2000
Y300T-D	AV3000
Y400T-D	AV4000
Y600T-D	AV5000

AV2000/3000/4000/5000 Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 9 for safety instructions and pages 13 to 17 for F.R.L. precautions.

Caution on Design

A Warning

1. Actuator drive

When using solenoid valve or actuator in the outlet side of this product, implement appropriate measures to prevent potential danger caused by actuator operation.

2. Holding pressure

Since the valve might have slight interal leakage, it is not suitable for holding pressure in a tank or another vessel for a long period of time.

3. Maintenance space

Allow the sufficient space for maintenance and inspection.

Selection

Warning

1. Confirm the specifications.

The products presented in this catalog are designed only for use in compressed air systems. Do not operate at pressures or temperatures, etc., beyond the range of specifications, as this can causedamage or malfunction. (Refer to specifica tions.) Please contact SMC if using for other fluids than compressed air.

2. Extended periods of continuous energization

Please contact SMC if valves will be continuously energized for extended periods of time.

3. Operation of closed center solenoid valves

Even if this product is used for closed center solenoid valves or actuator with a load factor of more then 50%, jumping (stick-slip phenomenon) cannot be prevented.

4. Using a regulator in the outlet side

When mounting a regulator in the outlet side (A port side), use a residual pressure relief regulator (AR25K to 40K) or a check type regulator. With a standard regulator (AR10 to 60), the outlet side pressure may not be released when this valve is exhausted.

5. Operation of solenoid valves in the outlet side

To operate solenoid valves mounted on this product's outlet side (A port side), first confirm that the outlet side's pressure (PA) has increased to become equal to the inlet side's pressure (PP).

6. Operation

The residual pressure release function of this product is for emergency use only; therefore, avoid the operation in the same manner as ordinary 3 port valves.

7. Using a lubricator

If mounting a lubricator, mount it on the inlet side (P port side), of this product. If mounted on the outlet side (A port side), back flow of oil will occur and may spurt out of the valve's R port.

8. Operation for air blowing

This product cannot be operated for air blowing due to the mechanism that switches the main valve to be fully open after the outlet side's pressure increases to approximately 1/2 of the inlet side.

Selection

▲Caution

1. Voltage leakage

Particularly when using a C-R element (surge voltage suppressor) for protection of the switching element, use cation that leakage voltage will increase due to leakage current flowing through the C-R element, etc.

AC coil is 20% or less of rated voltage. DC coil is 3% or less of rated voltage.

2. Low temperature operation

Although the valve can be operated at temperature as low as 0° C, measures should be taken to avoid solidifying or freezing drainage and moisture, etc.

Mounting

\land Warning

1. If air leakage increases or equipment does not operate properly, stop operation.

After mounting or maintenance, etc., connect the compressed air and power supplies, and perform appropriate function and leakage tests to confirm that the unit is mounted properly.

2. Operation manual

Mount and operate the product after reading the manual carefully and understanding its contents. Also keep the manual in a place where it can be referred to as necessary.

3. Painting and coating

Warnings or specifications printed or labeled on a product should not be erased, removed or covered up.

Furthermore, please contact SMC before painting the resin parts, as this may cause adverse effects depending on the solvent.

Adjustment

▲ Caution

 To perform the initial speed adjustment of a outlet side actuator, supply air from this valve's inlet side and turn ON the pilot valve. Then, rotate the needle counterclockwise from the fully closed position.

AV2000/3000/4000/5000 Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 9 for safety instructions and pages 13 to 17 for F.R.L. precautions.

Piping

▲ Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out by air (flushed) or washed to eliminate cutting chips, cutting oil, and other debris from the pipe inside.

2. Winding of sealant tape

When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not enter the piping. Also, if sealant tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

 Tighten threads with the proper tightening torque. When screwing fittings into valves, tighten with the torques given below.

Tightening Torque when Piping

Connection threads	Proper tightening torque (N·m)
Rc 1/4	12 to 14
Rc 3/8	22 to 24
Rc 1/2	28 to 30
Rc 3/4	28 to 30
Rc 1	36 to 38

4. Piping to products

When piping to products, avoid making an error of supply port, etc., by referring to the operation manuals.

5. F.R.L. module combination

When connecting to a modular F.R.L. combinations (AC20 to 60), select one of the spacers, which are included. (Refer to page 941 for details.) However, modular combinations with AC40-06 are not possible.

Furthermore, connect soft start-up valves to the outlet side of the F.R.L. combination.

6. Inlet side piping conditions

The nominal size of the piping material's or equipment's bore should be equal to or larger than the soft start-up valve's port size. The composite effective area of the inlet side's (P port side's) piping or equipment should be equal to or larger than the values below.

Model	Composite effective area (mm ²)
AV2000	5
AV3000	22
AV4000	35
AV5000	50

When the piping is restricted or the supply pressure is insufficient, the main valve will not switch and air leakage may occur from the R port.

Light/Surge Voltage Suppressor

▲ Caution

●Type G: Lead wire comes directly from the solenoid part. Connect it with the power source. Grommet with DC voltage surge voltage suppressor has polarity. Connect red lead wire to + (positive) side and black to – (negative) side.

Electrical Connection

A Caution

The DIN terminal is no polarity (+, -).

DIN terminal

าก	
L'Æ	\$\$H
	E1

DIN (EN175301-803) Terminal

Y type DIN terminal corresponds to the DIN connector with terminal pitch 10 mm, which complies with EN175301-803B. Since the terminal pitch is different from the D type DIN connector, these two types are not interchangeable.

AV2000/3000/4000/5000 Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to page 9 for safety instructions and pages 13 to 17 for F.R.L. precautions.

Air Supply

A Warning

1. Use clean air.

Do not use compressed air which contains chemicals, synthetic oils containing organic solvents, salts or corrosive gases, etc., as this can cause damage or malfunction.

Caution

1. Install air filters.

Install air filters close to valves at their upstream side. A filtration degree of 5 μm or less should be selected.

2. Implement countermeasures by installing aftercooler or air dryer, or water separator, etc.

The air including excess drain may result in a malfunction of valves and other pneumatic equipment. Implement countermeasures by installing after-cooler or air dryer, or water separator, etc.

Operating Environment

A Warning

- 1. Do not use valves in such environments where corrosive gases, chemicals, or brine or water or steam is airborne, or where valves can be directly exposed to any of those.
- 2. Do not use in an explosive environment.
- 3. Do not use in locations influenced by vibrations or impacts.
- 4. A protective cover, etc., should be used to shield valves from direct sunlight.
- 5. Shield valves from radiated heat generated by nearby heat sources.
- 6. Take suitable protective measures in locations where there are contacts with water droplets, oil, or welding spatter, etc.
- 7. In a dusty environment or when valve switching noise is intrusive, install a silencer in the R port to prevent dust from entering, and to reduce noise.

Lubrication

A Caution

- 1. The valve has been lubricated for life at the factory, and does not require any further lubrication.
- Use turbine oil Class 1, ISO VG32 (with no additives), if lubricated. Besides, if the lubrication is suspended halfway, the original lubricant will be lost and may result in a malfunction. Be sure to keep lubricating continuously.
- Note) Refer to SMC's website for details about each manufacturer's brand name of class 1 turbine oil (no additive) ISO VG32. Additionally, please contact SMC for details about class 2 turbine oil (with additives) ISO VG32.

Maintenance

A Warning

1. Perform maintenance and inspection as shown in the operation manual.

If handled improperly, damage may occur in machine or equipment or an operational error may result in.

2. Equipment removal and supply/exhaust of compressed air

When equipment is removed, first confirm that measures are implemented to prevent dropping of workpiece and runaway of equipment, etc. Then cut the supply pressure and power, and exhaust all compressed air from the system using its residual pressure release function.

3. Low frequency operation

Valves should be switched at least once every 30 days to prevent malfunction. (Use caution regarding the air supply.)

4. Manual override operation

When the manual override is operated, connected equipment will be actuated.

(At air temperature of 20°C)

Confirm the safety before operating.

▲Caution

1. Drain removal

Remove drain from air filters periodically.

How to Find the Flow Rate

Choke flow: $(P_2 + 0.1)/(P_1 + 0.1) \le 0.5$

Q = 120 x S x (P₁ + 0.1) x
$$\sqrt{\frac{293}{273 + t}}$$

Subsonic flow: when $(P_2 + 0.1)/(P_1 + 0.1) > 0.5$

Q = 240 x S x
$$\sqrt{(P_1 - P_2)(P_2 + 0.1)}$$
 x $\sqrt{\frac{293}{273 + t}}$

- Q: Air flow rate [L/min (ANR)]
- S: Effective area (mm²)
- P1: Inlet pressure [MPa]
- P2: Outlet pressure [MPa]
- t: Air temperature [°C]

Note 1) Formulas above are applied to pneumatics only.